

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

11_20220419_FINAL FULL SPECTRUM #25

Sample ID: SA-220421-8750 Batch: Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):		Received: 04/25/2022 Completed: 05/10/2022		Biomass Oil S 9251 N 2nd S Roscoe, IL 610 USA	Client Biomass Oil Separation Solutions LLC 9251 N 2nd St Roscoe, IL 61073 USA Lic. #: 1204-92	
			Summary Test Cannabinoids	y Date Tested 05/10/2022	Status Tested	
	TT-20					
ND	50.6 %	62.3 %	Not Tested	Not Tested	Yes	
Total ∆9-THC	CBD	Total Cannabinoids	Moisture Content		Internal Standard Normalization	
annabinoid	s by HPLC-PDA,				Normalization	
annabinoid: nalyte	s by HPLC-PDA,	LC-MS/MS, and	l/or GC-MS/M	IS Result	Normalization	
annabinoida nalyte 3C	s by HPLC-PDA,	LC-MS/MS, and DD %)	l/or GC-MS/M	IS Result (%)	Result (mg/g)	
annabinoid nalyte BC BCA	s by HPLC-PDA,	LC-MS/MS, and DD %)	I/or GC-MS/M LOQ (%) 0.0284	IS Result (%) 0.890	Result (mg/g) 8.90	
annabinoid nalyte BC BCA BCV	s by HPLC-PDA, (9 0.0 0.0 0.0	LC-MS/MS, and DD %) 1095 1181 1006	I/or GC-MS/M Loq (%) 0.0284 0.0543 0.018 0.0242	IS Result (%) 0.890 ND ND ND 50.6	Result (mg/g) 8.90 ND	
annabinoid nalyte IIC IIC IIC IIC IIC IIC IIC IIC IIC II	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	LC-MS/MS, and 200 %) 0095 0181 006 0081 0043	I/or GC-MS/M Loo (%) 0.0284 0.0543 0.018 0.0242 0.013	IS Result (%) 0.890 ND ND 50.6 ND	Normalization Result (mg/g) 8.90 ND ND 506 ND	
annabinoid nalyte BC BCA BC BD BDA BDV	s by HPLC-PDA, [5] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and 005 005 0081 0043 0061	I/or GC-MS/M Loo (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182	IS Result (%) 0.890 ND ND 50.6 ND 1.20	Normalization Result (mg/g) 8.90 ND ND ND 506 ND 12.0	
annabinoid halyte BC BCA BC BCA BC BD BD BD BD BD BDV BDVA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and 005 005 0081 0043 0061 0021	Allor GC-MS/M Loo (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND	Normalization Result (mg/g) 8.90 ND ND 506 ND 506 ND 12.0 ND	
annabinoid nalyte BC BCA BCA BCV BD BDA BDV BDVA BG	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 1011 1006 10081 10043 10061 10021 10057	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 1.20 ND 2.48	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8	
annabinoid nalyte BC BCA BCA BCV BD BDA BDA BDV BDVA BGA BGA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 10081 10043 10061 10021 10057 1049	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND	
annabinoid nalyte BC BCA BCA BCV BDA BDA BDV BDVA BGA BGA BL	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 10081 1043 1061 1021 1057 1049 1012	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND 24.8 ND 2.68	
annabinoid halyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BL BLA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 1018 1006 1008 10043 1006 10057 1043 10057 1049 1012 1012 1012	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND 2.68 ND	
annabinoid halyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 1181 1006 10081 10043 10061 10021 10057 1049 1012 1024 1024 1025	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND 24.8 ND 2.68 ND 9.76	
annabinoid nalyte BC BCA BCA BCV BDA BDA BDA BDA BDV BDVA BGA BCA BLA BLA BN BNA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 10043 10043 1005 10057 1005 1012 1024 1024 1024 1026 1021 1025 1026 1006 1006 1007	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.976 ND	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 268 ND 9.76 ND	
annabinoid malyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BCA BL BLA BLA BLA BLA BLA BLA BLA BLA BLA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 1181 1006 10081 10043 10061 10021 10057 1049 1012 1024 1024 1025	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND 24.8 ND 2.68 ND 9.76	
annabinoid nalyte BC BCA BCA BCV BDA BDA BDA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 1004 1004 1005 1024 1024 1024 1024 1024 1024 1024 1024 1025 1024 1026 1027 1029 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976 ND 5.88	Normalization Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 12.0 ND 24.8 ND 24.8 ND 268 ND 9.76 ND 58.8	
Cannabinoid nalyte BC BCA BCV BD BDA BDA BDA BDV BDVA BGA BGA BLA BLA BNA BT 8-THC 9-THC	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 1004 1004 1005 1024 1024 1024 1024 1024 1024 1024 1024 1025 1024 1026 1027 1029 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.976 ND 5.88 ND	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 268 ND 9.76 ND 58.8 ND	
Cannabinoid nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BLA BLA BNA BT 8-THC 9-THC 9-THCA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 1004 1004 1005 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1026 1086 1086 1086 1086 1086 1086 1087 1087 1088 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312 0.0227	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.976 ND 5.88 ND 0.976 ND 5.88 ND ND 5.88 ND ND 5.88 ND ND ND 5.88 ND ND ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 268 ND 9.76 ND 58.8 ND 58.8 ND	
Cannabinoid nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BLA BLA BNA BT 8-THC 9-THC 9-THCA 9-THCV	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 1181 1006 10081 10043 10061 10021 10057 10057 10059 1012 1024 1056 1006 1012 1024 1056 1006 10181 10104 1014	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312 0.0227 0.0251	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976 ND 5.88 ND 0.976 ND 5.88 ND ND 5.88 ND ND ND ND 5.88 ND ND ND ND 5.88 ND ND ND ND 5.88 ND ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 ND ND 5.88 5.88 ND 5.	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 268 ND 9.76 ND 58.8 ND 58.8 ND ND ND	
Cannabinoid nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BLA BLA BNA BT 8-THC 9-THC 9-THCA 9-THCV 9-THCV	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1004 1004 1004 1005 1021 1024 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312 0.027 0.0251 0.0206	Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976 ND 5.88 ND 0.976 ND 5.88 ND 0.976 ND	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 268 ND 9.76 ND 58.8 ND ND ND 12.0	
Cannabinoid nalyte BC BCA BCV BD BDA BDV BDVA BGA BLA BLA BLA BNA BT 8-THC 9-THCA 9-THCA 9-THCV 9-THCVA 9-THCVA 9-THCVA 9-THCVA 9-THCVA	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 1004 1004 1005 1021 1057 1049 1012 1024 1056 1066 1076 1076 1084 1076 1084 1076 1084 1095 1096 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312 0.0277 0.0251 0.0206 0.0186	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.976 ND 0.976 ND 5.88 ND 0.976 ND 5.88 ND 0.976 ND ND ND ND ND ND ND ND ND ND	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 24.8 ND 268 ND 9.76 ND 58.8 ND	
annabinoid nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BNA BT 3-THC 3-THC 3-THC 3-THC 3-THCV 3-THCV 3-THCVA 3-	s by HPLC-PDA, (5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LC-MS/MS, and DD %) 1095 111 1006 1003 1004 1004 1005 1021 1057 1049 1012 1024 1056 1066 1076 1076 1084 1076 1084 1076 1084 1095 1096 10	LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.0543 0.0312 0.0277 0.0251 0.0206 0.0186	IS Result (%) 0.890 ND ND 50.6 ND 1.20 ND 2.48 ND 0.268 ND 0.268 ND 0.976 ND 5.88 ND 0.976 ND 5.88 ND 0.976 ND ND 5.88 ND ND ND ND ND ND 1.20 ND 0.268 ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 ND ND 0.976 0.9767 0.9767 0.9776 0.9767 0.9767 0.9776 0.9767 0.9767 0.9776 0.97777 0.97777 0.9777777777777777777777777777777777777	Result (mg/g) 8.90 ND ND 506 ND 12.0 ND 24.8 ND 24.8 ND 268 ND 9.76 ND 58.8 ND ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 05/10/2022

Bullin

Testéd By: Jared Burkhart Technical Manager Date: 05/10/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.